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“Condensed history” algorithms® are approximate electron transport Monte Carlo meth-
ods in which the cumulative effects of multiple collisions are modeled in a single “step” of
(user-specified) path length sp. This path length is the distance each Monte Carlo electron
travels between “collisions.” Current condensed history techniques utilize a splitting routine
over the range 0 < s < sq.! For example, the PENELOPE method? splits each step into two
substeps; one with length £so and one with length (1—¢)sq, where £ is a random number from
0 < £ < 1. Because sq is fixed (not sampled from an exponential distribution), conventional
condensed history schemes are not transport processes.

Here we describe a new condensed history algorithm that is a transport process. Our
method simulates a transport equation that approximates the exact Boltzmann equation.
The new transport equation has a larger mean free path than, and preserves two angular
moments of, the Boltzmann equation. Thus, the new process is solved more efficiently by
Monte Carlo, and it conserves both particles and scattering power.

To derive the approximate transport equation, we begin with the exact Boltzmann equa-
tion with continuous slowing down energy dependence. After converting energy loss to path
length s, and adding the term /s, to both sides, we obtain
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Here, assuming %, = 0, L is the collision-minus-scattering operator:
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Now, we make the following approximation to the right side of Eq. (1) (with s; & so):
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Here G(Q2- Q' 51) is the “Goudsmit-Saunderson” distribution,
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Eq. (1) then becomes
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Eq. (5) is a legitimate transport equation with mean free path sy and scattering kernel
G(Q - Q,s1). The parameters sy and s; are contained in the collision-minus-scattering
operator M of Eq. (5). M can be rewritten as
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The n = 0 terms of Eq. (2) and Eq. (6) are both zero. Hence, both operators conserve
particles. To conserve scattering power, the n = 1 term of Eq. (6) must equal that of Eq. (2).
This condition dictates that
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Thus, the user may choose any value for sy that is less than one transport mean free
path, A\, = 5;,!. Physically, the transport mean free path is the mean penetration depth of
particles that have travelled infinite path length. Therefore, this constraint does not forbid
any reasonable choice for sy. In practice, however, we choose s; to be any suitable positive
path length, and then we use Eq. (7) to determine s.

Eq. (5) may be simulated like a standard analog Monte Carlo code. In this simulation,
the distance to “collision” (the distance to where a change of direction occurs) is sampled
from an exponential distribution with mean value sq. After a particle has experienced a
collision, the new direction of flight is sampled from the Goudsmit-Saunderson distribution
evaluated at path length s;. We describe this algorithm as a “transport condensed history”
method. Like conventional condensed history, this method contains larger distances between
collisions than in analog codes. Unlike conventional condensed history, our method is a true
transport process.

To test these ideas, let us consider a monoenergetic 12.5 keV electron pencil beam in an
infinite medium of aluminum. The continuous slowing down approximation is employed with
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multigroup cross sections obtained from the EPICSHOW code.* Scattering events, which are
modeled using the Screened Rutherford kernel, are the only interactions considered. -As the
electrons slow down to various energies, the mean position and the standard deviation about
this mean are calculated. The results are obtained using three different methods: (i) analog
Monte Carlo, (ii) transport condensed history, and (iii) PENELOPE condensed history. For
the condensed history codes, s; is selected as 1/2 the path length required for the electron
to lose the energy of one group. One million particle histories are used.

The mean depth z, the standard deviation about this mean o,, and the rms value of the
radial deflection o, for several energies are shown in Table 1. Because the first two angular
moments of the Boltzmann equation are preserved, transport condensed history exactly
matches the analog Monte Carlo results for Z. PENELOPE generally overestimates the
mean depth by 4%. As neither transport nor PENELOPE preserve higher-order moments,
the predictions for o, are about 5% too high. Surprisingly, PENELOPE predicts o, within
1%, especially at lower energies. For transport condensed history, these results are only
within 3%. The time required to generate the analog Monte Carlo results is roughly ten -
times greater than the run-time for the other two methods. v

In summary, we have developed a new condensed history algorithm for electron trans-
port that is a transport process. The new method should be more efficient. than current
condensed history schemes near material boundaries and interfaces, because the costly ex-
pense of shrinking or expanding the step sizes is unnecessary.® In future work, we plan to
test this idea in heterogeneous media and develop transport condensed history models that
preserve additional angular moments of the Boltzmann equation.

This work was performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under contract W-7405-ENG-48.
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TABLE 1: Mean Depth and Standard Deviations for a 12.5 keV Electron Beam
(amc = analog Monte Carlo, tch = transport condensed history,
pen= PENELOPE condensed history)

Final Solution zZ o, o,
Energy (keV) | Method | (um) | (um) | (um)
10.0 amc 43.56 | 15.53 | 29.11
10.0 tch 43.57 | 17.63 | 27.88
10.0 pen 45.43 | 18.55 | 26.45
8.0 ame 57.82 | 29.87 | 51.70
8.0 tch 57.83 | 32.50 | 50.07
8.0 pen 59.91 | 32.60 | 50.51
6.0 amc 63.01 | 40.45 | 66.69
6.0 tch 63.02 | 42.95 | 65.09
6.0 pen 65.23 | 42.98 | 66.13
3.0 amc 64.47 | 47.42 | 75.94
3.0 tch 64.46 | 49.68 | 74.45
3.0 pen 66.58 | 49.81 | 75.65
1.0 amc 64.51 | 48.38 | 77.16
1.0 tch 64.51 | 50.60 | 75.70
1.0 pen 66.74 | 50.76 | 76.93
0.1 amc 64.51 | 48.42 | 77.21
0.1 tch 64.51 | 50.63 | 75.76
0.1 pen 66.74 | 50.81 | 77.03




